Differentiation Rules

RULE 1 Derivative of a Constant Function

If f has the constant value $f(x)=c$, then

$$
\frac{d f}{d x}=\frac{d}{d x}(c)=0
$$

RULE 2 Power Rule for Positive Integers

If n is a positive integer, then

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

RULE 3 Constant Multiple Rule

If u is a differentiable function of x, and c is a constant, then

$$
\frac{d}{d x}(c u)=c \frac{d u}{d x}
$$

RULE 4 Derivative Sum Rule

If u and v are differentiable functions of x, then their sum $u+v$ is differentiable at every point where u and v are both differentiable. At such points,

$$
\frac{d}{d x}(u+v)=\frac{d u}{d x}+\frac{d v}{d x} .
$$

RULE 5 Derivative Product Rule

If u and v are differentiable at x, then so is their product $u v$, and

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

RULE 6 Derivative Quotient Rule
If u and v are differentiable at x and if $v(x) \neq 0$, then the quotient u / v is differentiable at x, and

$$
\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

RULE 7 Power Rule for Negative Integers

If n is a negative integer and $x \neq 0$, then

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} .
$$

Second- and Higher-Order Derivatives

EXAMPLE 14 Finding Higher Derivatives

The first four derivatives of $y=x^{3}-3 x^{2}+2$ are
First derivative: $\quad y^{\prime}=3 x^{2}-6 x$
Second derivative: $y^{\prime \prime}=6 x-6$
Third derivative: $\quad y^{\prime \prime \prime}=6$
Fourth derivative: $y^{(4)}=0$.

EXERCISES 3.2 P. 169

Find the derivatives of the functions in Exercises 17-28.
17. $y=\frac{2 x+5}{3 x-2} \quad$ 18. $z=\frac{2 x+1}{x^{2}-1}$
19. $g(x)=\frac{x^{2}-4}{x+0.5}$
20. $f(t)=\frac{t^{2}-1}{t^{2}+t-2}$
21. $v=(1-t)\left(1+t^{2}\right)^{-1}$
22. $w=(2 x-7)^{-1}(x+5)$
23. $f(s)=\frac{\sqrt{s}-1}{\sqrt{s}+1}$
24. $u=\frac{5 x+1}{2 \sqrt{x}}$
25. $v=\frac{1+x-4 \sqrt{x}}{x}$
26. $r=2\left(\frac{1}{\sqrt{\theta}}+\sqrt{\theta}\right)$
27. $y=\frac{1}{\left(x^{2}-1\right)\left(x^{2}+x+1\right)}$ 28. $y=\frac{(x+1)(x+2)}{(x-1)(x-2)}$
39. Suppose u and v are functions of x that are differentiable at $x=0$ and that

$$
u(0)=5, \quad u^{\prime}(0)=-3, \quad v(0)=-1, \quad v^{\prime}(0)=2
$$

Find the values of the following derivatives at $x=0$.
a. $\frac{d}{d x}(u v)$
b. $\frac{d}{d x}\left(\frac{u}{v}\right)$
c. $\frac{d}{d x}\left(\frac{v}{u}\right)$
d. $\frac{d}{d x}(7 v-2 u)$
40. Suppose u and v are differentiable functions of x and that

$$
u(1)=2, \quad u^{\prime}(1)=0, \quad v(1)=5, \quad v^{\prime}(1)=-1
$$

Find the values of the following derivatives at $x=1$.
a. $\frac{d}{d x}(u v)$
b. $\frac{d}{d x}\left(\frac{u}{v}\right)$
c. $\frac{d}{d x}\left(\frac{v}{u}\right)$
d. $\frac{d}{d x}(7 v-2 u)$

DEFINITION Instantaneous Rate of Change

The instantaneous rate of change of f with respect to x at x_{0} is the derivative

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

provided the limit exists.

DEFINITION Velocity

Velocity (instantaneous velocity) is the derivative of position with respect to time. If a body's position at time t is $s=f(t)$, then the body's velocity at time t is

$$
v(t)=\frac{d s}{d t}=\lim _{\Delta t \rightarrow 0} \frac{f(t+\Delta t)-f(t)}{\Delta t}
$$

DEFINITIONS Acceleration, Jerk

Acceleration is the derivative of velocity with respect to time. If a body's position at time t is $s=f(t)$, then the body's acceleration at time t is

$$
a(t)=\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}}
$$

Jerk is the derivative of acceleration with respect to time:

$$
j(t)=\frac{d a}{d t}=\frac{d^{3} s}{d t^{3}}
$$

DEFINITION Speed

Speed is the absolute value of velocity.

$$
\text { Speed }=|v(t)|=\left|\frac{d s}{d t}\right|
$$

Example:

Give the positions of a body moving on a coordinate line, with $s(t)=t^{2}-3 t+2$ in meters and t in seconds in the interval $[0,2]$.
a. Find the body's displacement and average velocity for the given time interval.
b. Find the body's speed and acceleration at the endpoints of the interval.
c. When, if ever, during the interval does the body change direction?

Solution:

$\mathrm{s}=\mathrm{t}^{2}-3 \mathrm{t}+2,0 \leq \mathrm{t} \leq 2$
(a) displacement $=\Delta \mathrm{s}=\mathrm{s}(2)-\mathrm{s}(0)=0 \mathrm{~m}-2 \mathrm{~m}=-2 \mathrm{~m}, \mathrm{v}_{\mathrm{av}}=\frac{\Delta \mathrm{s}}{\Delta \mathrm{t}}=\frac{-2}{2}=-1 \mathrm{~m} / \mathrm{sec}$
(b) $\mathrm{v}=\frac{\mathrm{ds}}{\mathrm{dt}}=2 \mathrm{t}-3 \Rightarrow|\mathrm{v}(0)|=|-3|=3 \mathrm{~m} / \mathrm{sec}$ and $|\mathrm{v}(2)|=1 \mathrm{~m} / \mathrm{sec}$;
$\mathrm{a}=\frac{\mathrm{d}^{2} \mathrm{~s}}{\mathrm{~d}^{2}}=2 \Rightarrow \mathrm{a}(0)=2 \mathrm{~m} / \sec ^{2}$ and $\mathrm{a}(2)=2 \mathrm{~m} / \sec ^{2}$
(c) $\mathrm{v}=0 \Rightarrow 2 \mathrm{t}-3=0 \Rightarrow \mathrm{t}=\frac{3}{2} \cdot \mathrm{v}$ is negative in the interval $0<\mathrm{t}<\frac{3}{2}$ and v is positive when $\frac{3}{2}<\mathrm{t}<2 \Rightarrow$ the body changes direction at $t=\frac{3}{2}$.

EXAMPLE 6 Finding Horizontal Tangents

Does the curve $y=x^{4}-2 x^{2}+2$ have any horizontal tangents? If so, where?
Solution The horizontal tangents, if any, occur where the slope $d y / d x$ is zero. We have,

$$
\frac{d y}{d x}=\frac{d}{d x}\left(x^{4}-2 x^{2}+2\right)=4 x^{3}-4 x .
$$

Now solve the equation $\frac{d y}{d x}=0$ for x :

$$
\begin{aligned}
4 x^{3}-4 x & =0 \\
4 x\left(x^{2}-1\right) & =0 \\
x & =0,1,-1 .
\end{aligned}
$$

The curve $y=x^{4}-2 x^{2}+2$ has horizontal tangents at $x=0,1$, and -1 . The corresponding points on the curve are $(0,2),(1,1)$ and $(-1,1)$. See Figure 3.10.

